On existence of independent sets in partially ordered sets

Joanna Jureczko

Cardinal Stefan Wyszynski University in Warsaw (Poland)

Winter School Hejnice 2013

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The strong sequences method was introduced by B. A. Efimov, as a useful method for proving famous theorems in dyadic spaces like: Marczewski theorem on cellularity, Shanin theorem on a calibre, Esenin-Volpin theorem, Erdös-Rado theorem and others.

(日) (日) (日) (日) (日) (日) (日)

Let T be an infinite set. Denote the Cantor cube by

$$D^T = \{ p \colon p \colon T \to \{0,1\} \}.$$

For $s \subset T$, $i: s \rightarrow \{0, 1\}$ it will be used the following notation

$$H_s^i = \{ p \in D^T : p | s = i \}.$$

Efimov defined strong sequences in the subbase $\{H'_{\{\alpha\}}: \alpha \in T\}$ of the Cantor cube and proved the following

Theorem (Efimov)

Let κ be a regular, uncountable cardinal number. In the space D^T there is not a strong sequence

$$(\{H^{i}_{\{lpha\}}: lpha \in v_{\xi}\}, \{H^{i}_{\{eta\}}: eta \in w_{\xi}\}) \; ; \; \; \xi < \kappa$$

・ロト ・聞ト ・ヨト ・ヨト 三日

such that $|w_{\xi}| < \kappa$ and $|v_{\xi}| < \omega$ for each $\xi < \kappa$.

Let *X* be a set, and $B \subset P(X)$ be a family of non-empty subsets of *X* closed with respect to finite intersections. Let *S* be a finite subfamily contained *B*. A pair (*S*, *H*), where $H \subseteq B$, will be called *connected* if $S \cup H$ is centered.

(日) (日) (日) (日) (日) (日) (日)

Let *X* be a set, and $B \subset P(X)$ be a family of non-empty subsets of *X* closed with respect to finite intersections. Let *S* be a finite subfamily contained *B*. A pair (*S*,*H*), where $H \subseteq B$, will be called *connected* if $S \cup H$ is centered.

Definition (Turzański)

A sequence (S_{ϕ}, H_{ϕ}) ; $\phi < \alpha$ consisting of connected pairs is called *a strong sequence* if $S_{\lambda} \cup H_{\phi}$ is not centered whenever $\lambda > \phi$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Turzański)

If for $B \subset P(X)$ there exists a strong sequence $S = (S_{\phi}, H_{\phi}); \phi < (\kappa^{\lambda})^{+}$ such that $|H_{\phi}| \leq \kappa$ for each $\phi < (\kappa^{\lambda})^{+}$ then there exists a strong sequence $(S_{\phi}, T_{\phi}); \phi < \lambda^{+}$, where $|T_{\phi}| < \omega$ for each $\phi < \lambda^{+}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In 2008 J. Jureczko, M. Turzański, From a Ramsey-Type Theorem To Independence, Acta Universitatis Carolinae - Mathematica et Physica, vol. 49, no. 2, p. 47-55.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We say that a family of sets \mathscr{S} fulfills condition (I) if for all $S_0, S_1, S_2 \in \mathscr{S}$, if $S_0 \cap S_1 = \emptyset$ and $S_0 \cap S_2 = \emptyset$ then either $S_1 \cap S_2 = \emptyset$ or $S_1 \subset S_2$ or $S_2 \subset S_1$.

(日) (日) (日) (日) (日) (日) (日)

We say that a family of sets \mathscr{S} fulfills condition (I) if for all $S_0, S_1, S_2 \in \mathscr{S}$, if $S_0 \cap S_1 = \emptyset$ and $S_0 \cap S_2 = \emptyset$ then either $S_1 \cap S_2 = \emptyset$ or $S_1 \subset S_2$ or $S_2 \subset S_1$.

Definition

We say that a family of sets \mathscr{S} fulfills condition $(T(\kappa))$ if for each set $U \in \mathscr{S}$ there is

$$|\{V \in \mathscr{S} \colon V \subset U\}| < \kappa$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A family $\{(A_{\xi}^{0}, A_{\xi}^{1}): \xi < \alpha\}$ of ordered pairs of subsets of X such that $A_{\xi}^{0} \cap A_{\xi}^{1} = \emptyset$ for $\xi < \alpha$ is called a weakly independent family (of length α) if for each $\xi, \zeta < \alpha$ with $\xi \neq \zeta$ we have $A_{\xi}^{i} \cap A_{\zeta}^{j} \neq \emptyset$, where $i, j \in \{0, 1\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A family $\{(A_{\xi}^{0}, A_{\xi}^{1}): \xi < \alpha\}$ of ordered pairs of subsets of X such that $A_{\xi}^{0} \cap A_{\xi}^{1} = \emptyset$ for $\xi < \alpha$ is called a weakly independent family (of length α) if for each $\xi, \zeta < \alpha$ with $\xi \neq \zeta$ we have $A_{\xi}^{i} \cap A_{\zeta}^{j} \neq \emptyset$, where $i, j \in \{0, 1\}$.

Theorem

Let \mathscr{S} be a family of sets which has the following properties: (i) \mathscr{S} fulfills condition (I); (ii) \mathscr{S} fulfills condition $(T(\kappa))$; (iii) for each $U \in \mathscr{S}$ there is $X \setminus U \in \mathscr{S}$. Then for each regular cardinal number κ such that $|\mathscr{S}| \geq \kappa > c(\mathscr{S})$ there exists a weakly independent family in \mathscr{S} of cardinality κ .

A family of sets \mathscr{S} is said to be binary if for each finite subfamily $\mathscr{M} \subset \mathscr{S}$ with $\bigcap \mathscr{M} = \emptyset$ there exist $A, B \in \mathscr{M}$ such that $A \cap B = \emptyset$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A family of sets \mathscr{S} is said to be binary if for each finite subfamily $\mathscr{M} \subset \mathscr{S}$ with $\bigcap \mathscr{M} = \emptyset$ there exist $A, B \in \mathscr{M}$ such that $A \cap B = \emptyset$.

Definition

A family $\{(A_{\xi}, B_{\xi}): \xi < \alpha\}$ of ordered pairs of subsets of *X*, such that $A_{\xi} \cap B_{\xi} = \emptyset$ for $\xi < \alpha$ is called an independent family (of length α) if for each finite subset $F \subset \alpha$ and each function $i: F \to \{-1, +1\}$ we have

$$igcap_{\{i(\xi)A_{\xi}:\ \xi\in F\}
eq \emptyset}$$

(日) (日) (日) (日) (日) (日) (日)

(where $(+1)A_{\xi} = A_{\xi}, (-1)A_{\xi} = B_{\xi}$).

Corollary

Let X be a compact zero-dimensional space. Let \mathscr{S} be a family consisting of clopen sets which has the following properties: (i) \mathscr{S} is a binary family; (ii) \mathscr{S} fulfills condition (I); (iii) \mathscr{S} fulfills condition $(T(\kappa))$; (iv) for each $U \in \mathscr{S}$ the set $X \setminus U \in \mathscr{S}$. Then for each regular cardinal number κ such that $|\mathscr{S}| \ge \kappa > c(\mathscr{S})$ there exists an independent family in \mathscr{S} of cardinality κ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We say that *a* and *b* are *comparable* if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $(a,b) \in r$ or $(b,a) \in r$.

- We say that a and b are *comparable* if $(a,b) \in r$ or $(b,a) \in r$.
- We say that *a* and *b* are *compatible* if there exists *c* such that

 $(a,c) \in r$ and $(b,c) \in r$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

(We say then that *a* and *b* have an *upper bound*).

- We say that a and b are *comparable* if $(a,b) \in r$ or $(b,a) \in r$.
- We say that *a* and *b* are *compatible* if there exists *c* such that

 $(a, c) \in r$ and $(b, c) \in r$.

(We say then that *a* and *b* have an *upper bound*).

 If each of two elements in a set A ⊂ X are compatible, then A is an upper directed set.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- We say that a and b are *comparable* if $(a,b) \in r$ or $(b,a) \in r$.
- We say that *a* and *b* are *compatible* if there exists *c* such that

 $(a,c) \in r$ and $(b,c) \in r$.

(We say then that *a* and *b* have an *upper bound*).

- If each of two elements in a set A ⊂ X are compatible, then A is an upper directed set.
- A set A is κ- upper directed if every subset of X of cardinality less than κ has an upper bound, i.e. for each B ⊂ X with |B| < κ there exists a ∈ A such that (b, a) ∈ r for all b ∈ B.

Let (X, r) be a set with relation r. A sequence $(S_{\phi}, H_{\phi}); \phi < \alpha$ where $S_{\phi}, H_{\phi} \subset X$ and S_{ϕ} is finite is called a strong sequence if $1^{o} S_{\phi} \cup H_{\phi}$ is ω -upper directed $2^{o} S_{\beta} \cup H_{\phi}$ is not ω -upper directed for $\beta > \phi$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We will denote $a \perp b$ if a, b are incompatible

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• We will denote $a \perp b$ if a, b are incompatible

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• We will denote $a \parallel b$ if a, b are compatible

- We will denote $a \perp b$ if a, b are incompatible
- We will denote $a \parallel b$ if a, b are compatible
- We say that (X, r) has A(κ) property iff for all x, y ∈ X if x ⊥ y then

$$|\{z \in X \colon x \parallel z \land z \parallel y\}| = \kappa.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- We will denote $a \perp b$ if a, b are incompatible
- We will denote $a \parallel b$ if a, b are compatible
- We say that (X, r) has A(κ) property iff for all x, y ∈ X if x ⊥ y then

$$|\{z \in X \colon x \parallel z \land z \parallel y\}| = \kappa.$$

 We say that (X, r) has Q(κ)-property iff for all x, y ∈ X if x || y then

$$|\{z \in X \colon x \perp z \lor z \perp y\}| = \kappa.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say that *L* ⊂ X is a *chain* if any *a*, *b* ∈ *L* are comparable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- We say that L ⊂ X is a *chain* if any a, b ∈ L are comparable.
- We say that a set A ⊂ X is called an *antichain* if any two distinct elements a, b ∈ A are incompatible.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We say that L ⊂ X is a *chain* if any a, b ∈ L are comparable.
- We say that a set A ⊂ X is called an *antichain* if any two distinct elements a, b ∈ A are incompatible.
- The minimal cardinal κ such that every antichain in X has size less than κ is saturation of X and denote it by sat(X).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A sequence of ordered pairs $\{(x_{\alpha}^{0}, x_{\alpha}^{1})\}$ where $x_{\alpha}^{0} \perp x_{\alpha}^{1}$ is said to be *an independent set* if for each finite set $F \subset \kappa$ and for each function $i \colon F \to \{0, 1\}$ the set $\{x_{\alpha}^{i(\alpha)} \colon \alpha \in F\}$ is ω - upper directed.

(日) (日) (日) (日) (日) (日) (日)

A sequence of ordered pairs $\{(x_{\alpha}^{0}, x_{\alpha}^{1})\}$ where $x_{\alpha}^{0} \perp x_{\alpha}^{1}$ is said to be *an independent set* if for each finite set $F \subset \kappa$ and for each function $i \colon F \to \{0, 1\}$ the set $\{x_{\alpha}^{i(\alpha)} \colon \alpha \in F\}$ is ω - upper directed.

Theorem

Let κ be a regular cardinal number. Let (X, r) be a set with relation which has $A(\omega)$ - and $Q(\omega)$ -property. If $|X| = \kappa > sat(X)$ then there exists an independent set in X of cardinality κ .

A sequence of ordered pairs $\{(x_{\alpha}^{0}, x_{\alpha}^{1})\}$ where $x_{\alpha}^{0} \perp x_{\alpha}^{1}$ is said to be *a* κ -*independent set* if for each set $F \subset \kappa$ of cardinality less than κ and for each function $i: F \to \{0, 1\}$ the set $\{x_{\alpha}^{i(\alpha)}: \alpha \in F\}$ is κ - upper directed.

A sequence of ordered pairs $\{(x_{\alpha}^{0}, x_{\alpha}^{1})\}$ where $x_{\alpha}^{0} \perp x_{\alpha}^{1}$ is said to be *a* κ -*independent set* if for each set $F \subset \kappa$ of cardinality less than κ and for each function $i: F \to \{0, 1\}$ the set $\{x_{\alpha}^{i(\alpha)}: \alpha \in F\}$ is κ - upper directed.

Theorem

Let κ be a regular number. Let (X, r) be a set with relation which has $A(\kappa)$ - and $Q(\kappa)$ -property. If $|X| = \kappa > sat(X)$ then there exists a κ -independent set in X of cardinality κ .

A cardinal κ is a *calibre* for X if κ is infinite and every set $A \in [X]^{\kappa}$ has a chain of size κ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A cardinal κ is a *calibre* for X if κ is infinite and every set $A \in [X]^{\kappa}$ has a chain of size κ .

Definition

A cardinal κ is a *precalibre* for X if κ is infinite and every set $A \in [X]^{\kappa}$ has ω -upper directed subset of cardinality κ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A cardinal κ is a *calibre* for X if κ is infinite and every set $A \in [X]^{\kappa}$ has a chain of size κ .

Definition

A cardinal κ is a *precalibre* for X if κ is infinite and every set $A \in [X]^{\kappa}$ has ω -upper directed subset of cardinality κ .

• Note Each calibre is a precalibre but the inverse theorem is not true.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let consider the following invariant

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let consider the following invariant

۲

 $s = sup\{\kappa: \text{ there exists a strong sequence in } X \text{ of the length } \kappa\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let consider the following invariant

 $s = sup\{\kappa : \text{ there exists a strong sequence in } X \text{ of the length } \kappa\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

٥

Let (X, r) be a set with relation r. Then each regular cardinal number $\tau > s$ is a precalibre for X.

Let τ be a cardinal number. Let (X, r) be a set with relation and τ^+ be a precalibre of X. If $|X| > 2^{\tau}$, then there exists an independent set of cardinality τ^+ .

・ コット (雪) (小田) (コット 日)

Let consider the following invariants

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Let consider the following invariants

٢

 $i = \sup\{|A| : A \text{ is an independent set in } X\}.$

Let consider the following invariants

۲

۲

 $i = \sup\{|A|: A \text{ is an independent set in } X\}.$

 $i_{\kappa} = \sup\{|A|: A \text{ is a } \kappa \text{-independent set in } X\}.$

Let (X, r) be a set with relation. Then i > s

Let (X, r) be a set with relation. Then i > s

Theorem

Let (X, r) be a set with relation. Let τ be a regular cardinal number which is a precalibre for X. Then $i > \tau > s$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\kappa \ge \omega$ and (X, r) be a set with relation of cardinality at least κ . If (X, r) has $A(\kappa)$ - and $Q(\kappa)$ -property then there exists a set $A \subset X$ of cardinality κ which is both a maximal κ -independent set and a maximal independent set.

・ロン ・雪 と ・ ヨ と …

Let $\kappa \ge \omega$ and (X, r) be a set with relation of cardinality at least κ . If (X, r) has $A(\kappa)$ - and $Q(\kappa)$ -property then there exists a set $A \subset X$ of cardinality κ which is both a maximal κ -independent set and a maximal independent set.

Corollary

Let $\kappa \ge \omega$ and (X, r) be a set with relation of cardinality at least κ . If (X, r) has $A(\kappa)$ - and $Q(\kappa)$ -property, then $i_{\kappa} = i$.

・ロン・(部・・市・・日・

Let (X, r) be a set with relation r. Then $s \ge sat(X)$.

Let (X, r) be a set with relation r. Then $s \ge sat(X)$.

Corollary

Let (X, r) be a set with relation. Let τ be a precalibre of X. Then $i > \tau > s \ge sat(X)$.

Let (X, r) be a set with relation r. Then $s \ge sat(X)$.

Corollary

Let (X, r) be a set with relation. Let τ be a precalibre of X. Then $i > \tau > s \ge sat(X)$.

Corollary

Let (X, r) be a set with relation. Let τ be a precalibre of X. Then $i_{\kappa} > \tau > s \ge sat(X)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• W. W. COMFORT, S. NEGREPONTIS, *Chain conditions in topology*, Cambridge University Press 1982.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- W. W. COMFORT, S. NEGREPONTIS, *Chain conditions in topology*, Cambridge University Press 1982.
- B. A. EFIMOV, *Diaditcheskie bikompakty*, (in Russian), Trudy Mosk. Matem. O-va **14** (1965), 211-247.

- W. W. COMFORT, S. NEGREPONTIS, *Chain conditions in topology*, Cambridge University Press 1982.
- B. A. EFIMOV, *Diaditcheskie bikompakty*, (in Russian), Trudy Mosk. Matem. O-va **14** (1965), 211-247.
- P. ERDÖS, A. TARSKI *On families mutually exclusive sets*, Ann. of Math. **44** (1943), 315-329.

- W. W. COMFORT, S. NEGREPONTIS, *Chain conditions in topology*, Cambridge University Press 1982.
- B. A. EFIMOV, *Diaditcheskie bikompakty*, (in Russian), Trudy Mosk. Matem. O-va **14** (1965), 211-247.
- P. ERDÖS, A. TARSKI *On families mutually exclusive sets*, Ann. of Math. **44** (1943), 315-329.
- W. KULPA, SZ. PLEWIK AND M. TURZAŃSKI, Applications of Bolzano-Weiestrass method, Topology Proceedings Volume 22 Summer (1997), 237-245.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

 E. MARCZEWSKI (E. SZPILRAJN) Remarque sur les produits cartesiens d'espaces topologiques, C. R. (Doklady), Acad. Sci. URSS, **31** (1941), 525-527.

- E. MARCZEWSKI (E. SZPILRAJN) *Remarque sur les produits cartesiens d'espaces topologiques*, C. R. (Doklady), Acad. Sci. URSS, **31** (1941), 525-527.
- N. A. SHANIN On the product of topological spaces Trudy Mat. Inst. Steklov., 24 (1948).

- E. MARCZEWSKI (E. SZPILRAJN) Remarque sur les produits cartesiens d'espaces topologiques, C. R. (Doklady), Acad. Sci. URSS, **31** (1941), 525-527.
- N. A. SHANIN On the product of topological spaces Trudy Mat. Inst. Steklov., 24 (1948).
- E. C. MILNER, M. POUZET On the cofinality of partially ordered sets, Ordered sets NATO adv. Study Inst. Ser. C: Math. Phys. Sci., 83 Reidel Dordrecht-Boston, Mass., 1982, pp 279-298.

(日) (日) (日) (日) (日) (日) (日)

- E. MARCZEWSKI (E. SZPILRAJN) Remarque sur les produits cartesiens d'espaces topologiques, C. R. (Doklady), Acad. Sci. URSS, **31** (1941), 525-527.
- N. A. SHANIN On the product of topological spaces Trudy Mat. Inst. Steklov., 24 (1948).
- E. C. MILNER, M. POUZET On the cofinality of partially ordered sets, Ordered sets NATO adv. Study Inst. Ser. C: Math. Phys. Sci., 83 Reidel Dordrecht-Boston, Mass., 1982, pp 279-298.
- B.C. MILNER, K. PRIPKY *The cofinality of the partially* ordered set Proc. London 46 (9), 1983, 454-470.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

 J.JURECZKO, Around the Bolzano-Weierstrass method, (in Polish) PhD Dissertation 2006.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- J.JURECZKO, Around the Bolzano-Weierstrass method, (in Polish) PhD Dissertation 2006.
- J.JURECZKO, M. TURZAŃSKI, *From a Ramsey-Type Theorem To Independence* Acta Universitatis Carolinae -Mathematica et Physica, vol. 49, no. 2, p. 47-55.

- J.JURECZKO, Around the Bolzano-Weierstrass method, (in Polish) PhD Dissertation 2006.
- J.JURECZKO, M. TURZAŃSKI, From a Ramsey-Type Theorem To Independence Acta Universitatis Carolinae -Mathematica et Physica, vol. 49, no. 2, p. 47-55.
- M. TURZAŃSKI, Cantor cubes: chain conditions, Prace naukowe Uniwersytetu Ślaskiego w Katowicach nr 1612, K-ce 1996.

(日) (日) (日) (日) (日) (日) (日)

- J.JURECZKO, Around the Bolzano-Weierstrass method, (in Polish) PhD Dissertation 2006.
- J.JURECZKO, M. TURZAŃSKI, *From a Ramsey-Type Theorem To Independence* Acta Universitatis Carolinae -Mathematica et Physica, vol. 49, no. 2, p. 47-55.
- M. TURZAŃSKI, Cantor cubes: chain conditions, Prace naukowe Uniwersytetu Ślaskiego w Katowicach nr 1612, K-ce 1996.
- M. TURZAŃSKI, Strong sequences and the weight of regular spaces, Comment. Math. Univ. Carolinae 33,3 (1992), 557-561.

THANK YOU FOR YOUR ATTENTION