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The strong sequences method was introduced by B. A. Efimov,
as a useful method for proving famous theorems in dyadic
spaces like: Marczewski theorem on cellularity, Shanin theorem
on a calibre, Esenin-Volpin theorem, Erdös-Rado theorem and
others.



Let T be an infinite set. Denote the Cantor cube by

DT = {p : p : T →{0,1}}.

For s ⊂ T , i : s→{0,1} it will be used the following notation

H i
s = {p ∈ DT : p|s = i}.

Efimov defined strong sequences in the subbase {H i
{α} : α ∈ T}

of the Cantor cube and proved the following



Theorem (Efimov)
Let κ be a regular, uncountable cardinal number.
In the space DT there is not a strong sequence

({H i
{α} : α ∈ vξ},{H i

{β} : β ∈ wξ}) ; ξ < κ

such that |wξ |< κ and |vξ |< ω for each ξ < κ.



Let X be a set, and B ⊂ P(X ) be a family of non-empty subsets
of X closed with respect to finite intersections. Let S be a finite
subfamily contained B. A pair (S,H), where H ⊆ B, will be
called connected if S∪H is centered.

Definition (Turzański)

A sequence (Sφ ,Hφ ); φ < α consisting of connected pairs is
called a strong sequence if Sλ ∪Hφ is not centered whenever
λ > φ .
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Theorem (Turzański)

If for B ⊂ P(X ) there exists a strong sequence
S = (Sφ ,Hφ );φ < (κλ )+ such that |Hφ | ≤ κ for each φ < (κλ )+

then there exists a strong sequence (Sφ ,Tφ );φ < λ+, where
|Tφ |< ω for each φ < λ+



In 2008
J. Jureczko, M. Turzański,
From a Ramsey-Type Theorem To Independence,
Acta Universitatis Carolinae - Mathematica et Physica, vol. 49,
no. 2, p. 47-55.



Definition
We say that a family of sets S fulfills condition (I) if for all
S0,S1,S2 ∈S , if S0∩S1 = /0 and S0∩S2 = /0 then either
S1∩S2 = /0 or S1 ⊂ S2 or S2 ⊂ S1.

Definition
We say that a family of sets S fulfills condition (T (κ)) if for
each set U ∈S there is

|{V ∈S : V ⊂ U}|< κ
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Definition

A family {(A0
ξ
,A1

ξ
) : ξ < α} of ordered pairs of subsets of X

such that A0
ξ
∩A1

ξ
= /0 for ξ < α is called a weakly independent

family (of length α) if for each ξ ,ζ < α with ξ 6= ζ we have
Ai

ξ
∩Aj

ζ
6= /0, where i , j ∈ {0,1}.

Theorem
Let S be a family of sets which has the following properties:
(i) S fulfills condition (I);
(ii) S fulfills condition (T (κ));
(iii) for each U ∈S there is X \U ∈S .
Then for each regular cardinal number κ such that
|S | ≥ κ > c(S ) there exists a weakly independent family in S
of cardinality κ.
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Definition
A family of sets S is said to be binary if for each finite subfamily
M ⊂S with

⋂
M = /0 there exist A,B ∈M such that A∩B = /0.

Definition
A family {(Aξ ,Bξ ) : ξ < α} of ordered pairs of subsets of X ,
such that Aξ ∩Bξ = /0 for ξ < α is called an independent family
(of length α) if for each finite subset F ⊂ α and each function
i : F →{−1,+1} we have⋂

{i(ξ )Aξ : ξ ∈ F} 6= /0

(where (+1)Aξ = Aξ ,(−1)Aξ = Bξ ).
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Corollary
Let X be a compact zero-dimensional space. Let S be a family
consisting of clopen sets which has the following properties:
(i) S is a binary family;
(ii) S fulfills condition (I);
(iii) S fulfills condition (T (κ));
(iv) for each U ∈S the set X \U ∈S .
Then for each regular cardinal number κ such that
|S | ≥ κ > c(S ) there exists an independent family in S of
cardinality κ.



Let (X , r) be a set with relation r.

We say that a and b are comparable if
(a,b) ∈ r or (b,a) ∈ r .
We say that a and b are compatible if there exists c such
that

(a,c) ∈ r and (b,c) ∈ r .

(We say then that a and b have an upper bound).
If each of two elements in a set A⊂ X are compatible, then
A is an upper directed set.
A set A is κ- upper directed if every subset of X of
cardinality less than κ has an upper bound, i.e. for each
B ⊂ X with |B|< κ there exists a ∈ A such that (b,a) ∈ r for
all b ∈ B.
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Definition
Let (X , r) be a set with relation r.
A sequence (Sφ ,Hφ );φ < α where Sφ ,Hφ ⊂ X and Sφ is finite is
called a strong sequence if
1o Sφ ∪Hφ is ω-upper directed
2o Sβ ∪Hφ is not ω-upper directed for β > φ .



We will denote a⊥ b if a,b are incompatible

We will denote a ‖ b if a,b are compatible
We say that (X , r) has A(κ) - property iff for all x ,y ∈ X if
x ⊥ y then

|{z ∈ X : x ‖ z ∧z ‖ y}|= κ.

We say that (X , r) has Q(κ)-property iff for all x ,y ∈ X if
x ‖ y then

|{z ∈ X : x ⊥ z ∨z ⊥ y}|= κ.
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We say that L ⊂ X is a chain if any a,b ∈L are
comparable.

We say that a set A ⊂ X is called an antichain if any two
distinct elements a,b ∈A are incompatible.
The minimal cardinal κ such that every antichain in X has
size less than κ is saturation of X and denote it by sat(X ).
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Definition

A sequence of ordered pairs {(x0
α ,x1

α)} where x0
α ⊥ x1

α is said to
be an independent set if for each finite set F ⊂ κ and for each
function i : F →{0,1} the set {x i(α)

α : α ∈ F} is ω− upper
directed.

Theorem
Let κ be a regular cardinal number. Let (X , r) be a set with
relation which has A(ω)- and Q(ω)-property. If |X |= κ > sat(X )
then there exists an independent set in X of cardinality κ.
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Definition
A cardinal κ is a calibre for X if κ is infinite and every set
A ∈ [X ]κ has a chain of size κ.

Definition
A cardinal κ is a precalibre for X if κ is infinite and every set
A ∈ [X ]κ has ω -upper directed subset of cardinality κ.

Note Each calibre is a precalibre but the inverse theorem
is not true.
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Theorem
Let (X , r) be a set with relation r . Then each regular cardinal
number τ > s is a precalibre for X .
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Theorem
Let τ be a cardinal number. Let (X , r) be a set with relation and
τ+ be a precalibre of X . If |X |> 2τ , then there exists an
independent set of cardinality τ+.
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Theorem
Let κ ≥ ω and (X , r) be a set with relation of cardinality at least
κ. If (X , r) has A(κ)- and Q(κ)-property then there exists a set
A⊂ X of cardinality κ which is both a maximal κ-independent
set and a maximal independent set.

Corollary

Let κ ≥ ω and (X , r) be a set with relation of cardinality at least
κ. If (X , r) has A(κ)- and Q(κ)-property, then iκ = i .
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of Bolzano-Weiestrass method, Topology Proceedings
Volume 22 Summer (1997), 237-245.



References

W. W. COMFORT, S. NEGREPONTIS, Chain conditions in
topology, Cambridge University Press 1982.
B. A. EFIMOV, Diaditcheskie bikompakty, (in Russian),
Trudy Mosk. Matem. O-va 14 (1965), 211-247.
P. ERDÖS, A. TARSKI On families mutually exclusive sets,
Ann. of Math. 44 (1943), 315-329.

W. KULPA, SZ. PLEWIK AND M. TURZAŃSKI, Applications
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J.JURECZKO, M. TURZAŃSKI, From a Ramsey-Type
Theorem To Independence Acta Universitatis Carolinae -
Mathematica et Physica, vol. 49, no. 2, p. 47-55.
M. TURZAŃSKI, Cantor cubes: chain conditions, Prace
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